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1. Introduction

Investigations of dual formulations for tensor fields are important for understanding of

alternative formulations of known theories like gravity as well as understanding of their

role in superstrings. In general, by dual formulation we mean any situation where the

very same particle is described by different tensor fields. Common procedure for obtaining

such dual formulations is based on the parent first order Lagrangians. As is well known in

flat Minkowski space such dualization procedure leads to different results for massive and

massless particles. At the same time in (Anti) de Sitter space-time gauge invariance requires

introduction quadratic mass-like terms into the Lagrangians. As a result dualization for

massless particles in (Anti) de Sitter spaces [1] goes exactly in the same way as that

for massive particles [2] and gives results different from ones for dualization of massless

particles [3] in flat Minkowski space.

In the first part of the paper paper using such dualization procedure we consider a

possibility to construct dual formulation of gravity where the main dynamical quantity is

a Lorentz connection field ωµ
ab. Such a formulation was considered previously e.g. [4 – 9].

Also such dual formulation of d = 3 gravity was recently discussed in [10]. It turns out that

in d = 3 dimensions such dual formulation of gravity is related with the so called exotic

parity-violating interactions for massless spin-2 particles [11, 12]. So we start with d = 3

case and show that such exotic interaction can be viewed as higher derivatives interactions

in terms Lorentz connection ωµ
ab. Then we show how such interaction could be obtained

from the usual gravitational interactions by dualization procedure starting with (Anti) de

Sitter space and then considering a kind of flat limit. Then in the next section we consider

straightforward generalization of such theory on arbitrary d ≥ 4 dimensions.

But there exist another well known first order formalism for gravity usually called

Palatini formalism, the main components being the metric and affine connection. Such

formalism differs drastically from the tetrad one because affine connection is not a gauge
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invariant object (or, geometrically, it is not a covariant tensor) and does not have its own

gauge invariance. In spite of this difference, as we are going to show in the second part of our

paper, it is also possible to apply the same dualization procedure to obtain a formulation

of gravity where the main dynamical field is the affine connection. Rather naturally and

at the same time surprisingly the final result is nothing else but the Lagrangian written by

Eddington in 1924 [13]! Also there is an interesting connection with attempts to construct

gravitational analog of Born-Infeld electrodynamics [14 – 19].

2. Dual gravity in d = 3

Investigations of possible interactions for massless spin-2 particles have shown that in d = 3

case there exist non-trivial ”exotic parity-violating” higher derivatives interactions [11, 12].

The simplest way to see this [20] is to start with the first order formulation for massless

spin-2 particle using ”triad” hµ
a and Lorentz connection ωµ

ab and introduce dual variable

fµ
a = 1

2εabcωµ
bc. In this notations the Lagrangian for free massless spin-2 particles has a

very simple form:

L0 =
1

2

{ µν
ab

}

fµ
afν

b − εµναfµ
a∂νhα

a (2.1)

Here
{ µν

ab

}

= δa
µδb

ν − δa
νδb

µ

and so on. This Lagrangian is invariant under the following local gauge transformations:

δhµa = ∂µξa + εµabη
b δfµ

a = ∂µηa (2.2)

Then it is easy to check that if we add the following cubic terms to the Lagrangian and

appropriate corrections to gauge transformation laws:

L1 = −K

6

{ µνα
abc

}

fµ
afν

bfα
c δ1hµ

a = −Kεabcfµ
bηc (2.3)

where K — arbitrary coupling constant, we obtain gauge invariant interacting theory. In

this, equation of motion for the fµ
a field are still algebraic, but non-linear now. So if we try

to solve this equation in passing to second order formulation we get essentially non-linear

theory with higher and higher derivatives terms. To see what kind of theory we get let us

consider lowest order approximations. It will be convenient to introduce ”dual torsion”

T µa = −εµνα∂νhα
a, T̂ µa = T µa − eµaT

Then from the quadratic Lagrangian we easily obtain:

f (1)a
µ = T̂ a

µ, L0 = −1

2

{ µν
ab

}

T̂ a
µT̂ b

ν

In the next quadratic order we get:

f (2)a
µ = −KT̂ a

bT̂
b
µ +

K

4
eµ

a[T̂ b
cT̂

c
b + T̂ 2]
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Substituting this expressions back to the first order Lagrangian and keeping only terms

cubic in fields we obtain an interactions in a first non-trivial order:

L1 =
K

6

{ µνα
abc

}

T̂ a
µT̂ b

ν T̂
c
α (2.4)

and this is just the interaction considered in [11, 12]. Note here that such interactions do

not necessarily violate parity because one can always assign fµ
a to be a tensor, while hµ

a

— a pseudotensor. Now we can once again use a peculiarity of d = 3 space and dualize

hµ
a instead of fµ

a: hα
a = 1

2εabcωα
bc Then we can rewrite all results in terms of this new

variable by noting that:

T̂ a
µ = (Rµ

a − 1

4
δµ

aR) = R̂µ
a

where we have introduced usual field strength:

Rµν
ab = ∂µων

ab − ∂νωµ
ab, Rµ

a = δν
bRµν

ab

Now the cubic interactions looks like:

L1 =
K

6

{ µνα
abc

}

R̂µ
aR̂ν

bR̂α
c (2.5)

In d = 3 dimensions all these look just like trivial field redefinition, but looking this

way it has to be clear that there should exist a generalization of such interactions on

arbitrary d ≥ 4. To see how this generalization could be constructed we have to reobtain

the same results without use of peculiarities of d = 3 dimensions. Now we will show that it

is indeed possible by following usual dualization procedure based on the parent first order

Lagrangians. Crucial fact here is that dualization for massless particles in (Anti) de Sitter

spaces [1] goes in way similar to the one for massive particles in flat space [2] and not to that

for massless ones [3]. So let us return back to the free case and start with massless particle

in (Anti) de Sitter background space. A first order Lagrangians looks now as follows:

L0 =
1

2

{ µν
ab

}

fµ
afν

b − εµναfµ
aDνhα

a +
κ

2

{ µν
ab

}

hµ
ahν

b (2.6)

and is invariant under the following local gauge transformations:

δhµa = Dµξa + εµabη
b δfµ

a = Dµηa + κεµabξ
b (2.7)

Working with the first order formalism it is very convenient to use tetrad formulation

of the underlying (Anti) de Sitter space. We denote tetrad as eµ
a (let us stress that it is

not a dynamical quantity here, just a background field) and Lorentz covariant derivative

as Dµ. (Anti) de Sitter space is a constant curvature space with zero torsion, so we have:

D[µeν]
a = 0, [Dµ,Dν ]v

a = κ(eµ
aeν

b − eµ
beν

a)vb (2.8)

where κ = −2Λ/(d − 1)(d − 2).

Now we switch on usual gravitational interaction by adding to the Lagrangian the

following cubic terms:

L1 = −k

2

{ µνα
abc

}

fµ
afν

bhα
c − kκ

6

{ µνα
abc

}

hµ
ahν

bhα
c (2.9)
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as well as appropriate corrections to gauge transformation laws:

δ1hµ
a = kεabc(fµ

bξc + hµ
bηc) δ1fµ

a = kεabc(fµ
bηc + κhµ

bξc) (2.10)

Note that in d = 3 case this gives us complete interacting theory. Then we switch back to

the usual variable: fµ
a = 1

2εabcωµ
bc. Also in order to have canonical normalization of fields

in dual theory (where ω is main dynamical quantity now, while h — just auxiliary field)

we make a rescaling: ω →
√

κω and h → 1√
κ
h. In this a quadratic Lagrangian takes the

form:

L0 =
κ

2

{ µν
ab

}

ωµ
acων

bc − 1

2

{ µνα
abc

}

ωµ
abDνhα

c +
1

2

{ µν
ab

}

hµ
ahν

b (2.11)

and gauge transformations leaving it invariant (now ηa = 1
2εabcηbc)

δhµa = Dµξa + κηµa δωµ
ab = Dµηab − eµ

aξb + eµ
bξa (2.12)

At the same time an interacting Lagrangian in these variables looks like:

L1 = −k
√

κ

2

{ µνα
abc

}

ωµ
adων

bdhα
c − k

6
√

κ

{ µνα
abc

}

hµ
ahν

bhα
c (2.13)

with appropriate corrections for gauge transformations:

δ1hµ
a = −k

√
κ(ωµ

abξb + hµbη
ba)

δ1ωµ
ab = −k

√
κ(ωµ

acηcb − ωµ
bcηca) +

k√
κ

(hµ
aξb − hµ

bξa) (2.14)

Usually in passing to the second order formulation one solves algebraic equation of mo-

tion for the ω field (which geometrically give zero torsion condition). Then putting results

back into the initial first order Lagrangian one obtains ordinary second order formulation in

terms of (symmetric) tensor field. Here we proceed another way and try to solve equation

for h field which is also algebraic in (Anti) de Sitter background. This equation looks as:

δL
δhµ

a
= −1

4

{ µνα
abc

}

Rνα
bc +

{ µν
ab

}

hν
b − k

2
√

κ

{ µνα
abc

}

hν
bhα

c − k
√

κ

2

{ µνα
abc

}

ων
bdωα

cd (2.15)

where now Rµν
ab = Dµων

ab − Dνωµ
ab. In the lowest order approximation we get:

h(1)a
µ = R̂µ

a, R̂µ
a = Rµ

a − 1

4
eµ

aR (2.16)

while a second order quadratic Lagrangian takes the form:

L0 = −1

2

{ µν
ab

}

R̂µ
aR̂ν

b +
κ

2

{ µν
ab

}

ωµ
acων

bc (2.17)

Note, that appearance of quadratic mass-like terms is natural in (Anti) de Sitter background

and does not mean that ω field becomes massive. It is important that besides usual gauge

transformations δωµ
ab = Dµηab this Lagrangian also invariant under the local shifts δωµ

ab =

−eµ
aξb+eµ

bξa which is a remnant of ξ-invariance of initial first order Lagrangian. To check

this invariance one can use that under these transformations we have δR̂µ
a = Dµξa.
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Now we proceed and consider next approximation with cubic interaction terms in the

Lagrangian and linear terms in gauge transformation laws. Before we give explicit formulas

let us discuss what kind of theory we obtain. Schematically the solution of h equation and

cubic Lagrangian look like:

h(2) ∼ k√
κ

(Dω)(Dω) + k
√

κωω

L1 ∼ k√
κ

(Dω)(Dω)(Dω) + k
√

κ(Dω)ωω (2.18)

So the ”main” interaction terms are cubic three derivatives ones constructed from the gauge

invariant field strengths (Dω), the coupling constant being K = k√
κ

and at this level theory

is essentially abelian. Only the presence of nonzero cosmological term adds one derivative

Yang-Mills type coupling with dimensionless coupling constant being g = k
√

κ. In this,

our theory becomes non-abelian, the gauge group being the Lorentz group. The non-trivial

interactions given above could be reproduced now in a kind of ”flat” limit when k → 0 and

κ → 0 keeping K fixed. Indeed, in this limit we obtain:

h(2)a
µ = K

[

−R̂µ
bR̂b

a + R̂µ
aR̂ +

1

4
eµ

aR̂b
cR̂c

b − 1

4
eµ

aR̂2

]

(2.19)

while the cubic terms in the Lagrangian take the same simple form as before:

L1 = −K

6

{ µνα
abc

}

R̂µ
aR̂ν

bR̂α
c (2.20)

Besides the trivial at these limit invariance under the ηab gauge transformations this La-

grangian is also invariant under the local shifts ξa with appropriate corrections:

δ1ωµ
ab = K(R̂µ

aξb − R̂µ
bξa)

Let us stress that it is the invariance under these shifts that fixes the particular structure

of cubic interactions among many other possible gauge invariant terms that could be easily

constructed.

3. Dual gravity in d ≥ 4

In this section we consider straightforward generalization of the procedure given above to

the case of arbitrary d ≥ 4 space-times. Again we start with the first order formulation of

massless spin-2 particle in (Anti) de Sitter background with the Lagrangian:

L0 =
κ

2

{ µν
ab

}

ωµ
acων

bc − 1

2

{ µνα
abc

}

Dµων
abhα

c +
d − 2

2

{ µν
ab

}

hµ
ahν

b (3.1)

Here we have already made a rescaling of fields appropriate for dual version. Then we add

the usual gravitational interactions at the first non-trivial (cubic) order:

L1 =
k
√

κ

2

{ µνα
abc

}

ωµ
adων

bdhα
c− k

4
√

κ

{

µναβ
abcd

}

Dµων
abhα

chβ
d+

(2d − 5)k

6
√

κ

{ µνα
abc

}

hµ
ahν

bhα
c

(3.2)
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As is well known working with tetrad formulation of gravity and especially with supergrav-

ity theories it is very convenient to use the so called ”1 and 1/2” order formalism. But here

to construct a dual theory we have to work in a ”honest” first order formalism taking into

account gauge transformations for all fields. In this approximation they have the following

form:

δ1ωµ
ab =

k√
κ

[ξνRνµ
ab + (Rµ

aξb − Rµ
bξa) +

1

d − 2
ξν(eµ

aRν
b − eµ

bRν
a) −

− 1

2(d − 2)
(eµ

aξb − eµ
bξa)R − (d − 2)(hµ

aξb − hµ
bξa)] (3.3)

δ1hµ
a = k

√
κωµ

abξb

for the ξa-transformations as well as

δ1ωµ
ab = k

√
κ(ωµ

acηcb − ωµ
bcηca) δ1hµ

a = k
√

κhµbη
ba (3.4)

for the ηab-ones. Note that the main difference from the d = 3 case is rather complicated

form for the ξ-transformations of ω field. As we will see this leads to the essential difference

in the structure of interacting Lagrangian. Now we try to solve algebraic equation for h

field which in this approximation looks as follows:

δL
δhµ

a
= −1

4

{ µνα
abc

}

Rνα
bc + (d − 2)

{ µν
ab

}

hν
b − k

4
√

κ

{

µναβ
abcd

}

Rνα
bchβ

d +

+
(2d − 5)k

2
√

κ

{ µνα
abc

}

hν
bhα

c +
k
√

κ

2

{ µνα
abc

}

ων
bdωα

cd (3.5)

This equation is a non-linear one. Moreover, if one consider next to the linear approxi-

mations then one obtains even more non-linear terms. So it seems hardly possible to get

general solution of this equation, but nothing prevent us from solving it iteratively, order

by order. Here we restrict ourselves by the linear approximation as in the previous case.

In the lowest order approximation we get:

h(1)a
µ =

1

d − 2
R̂µ

a, R̂µ
a = Rµ

a − 1

2(d − 1)
eµ

aR (3.6)

and in this notations the structure of quadratic second derivative Lagrangian looks very

similar to the d = 3 case:

L0 = − 1

2(d − 2)

{ µν
ab

}

R̂µ
aR̂ν

b +
κ

2

{ µν
ab

}

ωµ
acων

bc (3.7)

The formulas in the next approximation could be greatly simplified if we introduce

traceless conformal Weyl tensor:

Cµν
ab = Rµν

ab − 1

d − 2
e[µ

[aRν]
b] +

1

(d − 1)(d − 2)
eµ

[aeν
b]R (3.8)

in this, the following useful relation holds:

Rµν
ab = Cµν

ab +
1

d − 2
e[µ

[aR̂ν]
b] (3.9)
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As in the d = 3 case it is possible to consider a ”flat” limit with when k → 0 and

κ → 0 keeping K = k√
κ

fixed. In this limit a solution of h equation in the next order gives:

h(2)a
µ = − K

(d − 2)3
[(d − 2)Cµν

abR̂b
ν − R̂µ

νR̂ν
a + R̂µ

aR̂ +
1

2(d − 1)
eµ

a[(R̂R̂) − R̂2]] (3.10)

Then putting this expression back to the initial first order Lagrangian and keeping only

cubic terms we obtain the following three derivatives Lagrangian:

L1 = − K

2(d − 2)2
[
{

µναβ
abcd

}

Cµν
abR̂α

cR̂β
d +

d − 4

3(d − 2)

{ µνα
abc

}

R̂µ
aR̂ν

bR̂α
c] (3.11)

Again this particular structure of the Lagrangian is fixed not only by the invariance under

the usual gauge transformations δωµ
ab = ∂µηab, but also by the invariance under the local

ξ shifts with the linear terms being:

δ1ωµ
ab = K[ξνCνµ

ab +
1

d − 2
(R̂µ

bξa − R̂µ
aξb)] (3.12)

The following identities turn out to be useful:

DaCµν
ab =

1

d − 2
(DµR̂ν

b − DνR̂µ
b)

DaR̂µ
a = DµR̂ (3.13)

Note, that the general structure of the Lagrangian obtained is in agreement with the d = 3

case. Indeed, in d = 3 conformal Weyl tensor is identically zero, so the first term is absent.

It is interesting to note that the d = 4 case is also special, because in this and only this

case the second term is absent.

4. Metric and affine connection

Let us start with the first order Lagrangian describing free massless spin-2 particle in flat

Minkowski space:

L0 = hµν(∂αΓµν
α − ∂µΓν) + ηµν(Γµν

αΓα − Γµα
βΓνβ

α) (4.1)

Here hµν is symmetric second rank tensor while Γµν
α is assumed to be symmetric on the

lower pair of indices. We denote Γα = Γαβ
β, Γα = ηµνΓµν

α (note, that Γα and Γα are

in general different objects). This Lagrangian is invariant under the following local gauge

transformations:

δhµν = ∂µξν + ∂νξµ − ηµν(∂ξ), δΓµν
α = −∂µ∂νξα (4.2)

As is well known, if one solves the algebraic equation of motion for the Γ field and put

the result back into the Lagrangian one obtains usual second order Lagrangian for the

symmetric tensor hµν . In order to have a possibility to construct dual formulation where

the main dynamical object is Γ we move from the flat Minkowski space to (Anti) de Sitter

– 7 –
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space. Let ḡµν be a metric for this space (it is not a dynamical quantity, just a background

field here) and Dµ — derivatives covariant with respect to background connection winch

is torsionless and metric compatible:

Dαḡµν = 0, [Dµ,Dν ]vα = R̄µν,α
β(ḡ)vβ = κ(ḡµαδν

β − δµ
β ḡνα)vβ (4.3)

where κ = −2Λ/(d − 1)(d − 2). First of all we have to replace in the Lagrangian as well

as in the gauge transformations the flat metric ηµν by ḡµν and partial derivatives ∂µ by

covariant ones Dµ:

L0 = hµν(DαΓµν
α − DµΓν) + ḡµν(Γµν

αΓα − Γµα
βΓνβ

α)

δhµν = Dµξν + Dνξµ − ḡµν(Dξ), δΓµν
α = −1

2
(DµDν + DνDµ)ξα (4.4)

Now (just because covariant derivatives do not commute) our Lagrangian is not invariant

under the gauge transformations. Indeed, simple calculations give:

δL0 = κ[(d − 2)Γµξµ − d − 3

2
Γµξµ − 3d − 1

2
hµνDµξν + h(Dξ)]

But gauge invariance could be easily restored by adding terms quadratic in hµν field to the

Lagrangian as well as appropriate corrections for the gauge transformations:

∆L0 =
κ(d − 1)

2
[hµνhµν − 1

d − 2
h2]

δ′Γµν
α =

κ

2
(δµ

αξν + δν
αξµ) − κḡµνξα (4.5)

Now one can easily solve the equations for the hµν field, which are also algebraic now, to

obtain:

hµν =
1

κ(d − 1)
[Rµν − 1

2
ḡµνR] (4.6)

where we introduced a symmetric second rank tensor (it is not a full Ricci tensor yet, only

the first part of it):

R(µν) =
1

2
(DµΓν + DνΓµ) − DαΓµν

α (4.7)

Then if we put this expression back into the initial first order Lagrangian we obtain dual

second order formulation for massless spin-2 particle in terms of Γ field:

LII = − 1

κ(d − 1)
[RµνRµν − 1

2
R2] + ḡµν(Γµν

αΓα − Γµα
βΓνβ

α) (4.8)

A natural question arises: our field Γµν
α has a lot of independent components (40 in d = 4

instead of two helicities for massless spin-2 particle), so there should exist a large gauge

symmetry in such a model. And indeed, it is easy to check that the kinetic terms in our

second order Lagrangian are invariant under the local ”affine” transformations:

δΓµν
α = ∂µzν

α + ∂νzµ
α +

1

d − 1
[δµ

α(∂z)ν + δν
α(∂z)µ] −

− 1

d − 1
[δµ

α∂νz + δν
α∂µz] (4.9)

– 8 –



J
H
E
P
1
0
(
2
0
0
6
)
0
0
9

where zµ
ν is arbitrary second rank tensor and z = zµ

µ.

Now, having in our disposal an alternative description for massless spin-2 particle, it

is natural to see how an interaction in such dual theory looks like. Nice feature of Palatini

formulation is that switching on an interaction is a simple one step procedure [21]. But

as we have seen, it is very important for the possibility to construct dual formulations to

work not in a flat Minkowski space but in (Anti) de Sitter space. So we start with the

usual Lagrangian with the cosmological term:

L =
√
−ggµνRµν + Λ

√
−g (4.10)

where now

Rµν =
1

2
(DµΓν + DνΓµ) − DαΓµν

α + Γµν
αΓα − Γµα

βΓνβ
α (4.11)

Then we introduce a convenient combination ĝµν =
√−ggµν and rewrite a Lagrangian as:

L = ĝννRµν + Λdet(ĝµν)
1

d−2 (4.12)

The crucial point here is that first term contains ĝ only linearly. As a result it is possible

to get complete nonlinear solution of the ĝ equations. We obtain (up to some numerical

coefficients):

ĝµν '
√

det(Rµν)(Rµν)−1 (4.13)

At last, if we put this expression back into the first order Lagrangian we obtain (again up

to normalization) a very simple and elegant Lagrangian:

L =
√

det(Rµν) (4.14)

And it is just a Lagrangian written by Eddington eighty years ago in his book [13]! This

result is very natural because this Lagrangian is the only invariant that could be constructed

out of the affine connection alone, without any use of metric or any other objects, but it is

exiting that this Lagrangian turns out to be dual formulation of usual gravity theory. Let

us stress once again that working in a flat Minkowski space it is very hard if at all possible

to give any reasonable physical interpretation to such model. But let us consider this

model on a (Anti) de Sitter background. For that purpose we represent a total connection

as Γµν
α = Γ̄µν

α + Γ̃µν
α where Γ̄µν

α is a background connection while Γ̃µν
α — small

perturbation around it (see e.g. [22, 23]). Then for the curvature tensor we will have:

Rµν,α
β = R̄µν,α

β + [DµΓ̃να
β + Γ̃µα

ρΓ̃ρν
β − (µ ↔ ν)] (4.15)

where R̄µν,α
β is a curvature tensor for the background connection and Dµ is a derivative

covariant with respect to Γ̄. Then for the constant curvature space we have R̄µν = Λḡµν

so the Lagrangian takes the form:

L =

√

det(Λḡµν + R̃µν) (4.16)

It is interesting that Lagrangians of such kind have already been investigated e.g. [14 – 19]

in attempts to construct gravitational analog of the Born-Infeld electrodynamics. But now
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the interpretation of the Lagrangian is drastically different. Indeed, let us use the well

known decomposition for the determinant

√

det(I + A) = 1 +
1

2
Sp(A) +

1

8
(Sp(A))2 − 1

4
Sp(A2) + · · · .

where A is any matrix. Then if we consider the curvature Rµν as being expressed in

terms of metric and its second derivatives the first linear terms gives scalar curvature while

quadratic terms give higher derivative terms leading to the appearance of ghosts. But

here the main dynamical quantity is affine connection Γ and the curvature Rµν contains

only first derivatives. As a result a term linear in R is just a total derivative and could

be dropped out of the action, while the quadratic terms give exactly the kinetic terms we

obtained above.

Finally, let us add some comments on possible interaction with matter in such formu-

lation of gravity. The most clear and straightforward way to obtain these interactions is to

start with usual interactions in first order form and then try to go to the dual formulation.

For example, for the scalar field we get:

L =
√
−g[gµνRµν + Λ +

1

2
gµν∂µϕ∂νϕ − m2

2
ϕ2] =

= ĝµν(Rµν +
1

2
∂µϕ∂νϕ) + (Λ − m2

2
ϕ2)det(ĝµν)

1

d−2 (4.17)

and the second line shows that the main effect is the replacement of Rµν by Rµν + 1
2∂µϕ∂νϕ

(compare [19]). Also if scalar field has nonzero mass the cosmological constant Λ is replaced

by field dependent combination Λ − m2

2 ϕ2. But for the vector field (even massless) the

situation turns out to be much more complicated because even for the minimal interaction:

L =
√
−g[gµνRµν + Λ − 1

4
gµαgνβFµνFαβ ] =

= ĝννRµν + Λdet(ĝµν)
1

d−2 − 1

4
det(ĝµν)−

1

d−2 ĝµαĝναFµνFαβ (4.18)

equations for the ĝ become highly nonlinear. But in a weak field approximation such model

could reproduce a correct kinetic term for the vector field. Note also that the corrections

to the Rµν tensor here start with the terms quadratic in Fµν and there is no term linear

in it in contrast with [19].

5. Conclusion

In this paper we have shown that there indeed exists a dual formulation of gravity in terms

of Lorentz connection ωµ
ab field. Such formulation turns out to be highly non-linear higher

derivatives theory, so it is not an easy task (if at all possible) to give compact formulation

at full non-linear level. However it is possible to construct such theory iteratively, order

by order in fields as we have done in the linear approximation here. Also we have shown

that the so called exotic parity-violating interactions for massless spin-2 particles could be

considered just as such dual formulation of usual gravitational interactions.
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Also we have shown that the dualization procedure based on the use of (Anti) de Sitter

background space could be applied to the gravity theory in a Palatini formalism and leads

to the formulation in terms of affine connection. In this, the final Lagrangian coincides

with that of Eddington [13]. A number of interesting question arises, for example, whose

related with the gauge symmetries of such formulation, which deserve further study.
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